
2020-11-02

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Solving problems
recursively

2
Solving problems recursively

Outline

• In this lesson, we will:

– Implement selection and insertion sort recursively

– Print a number in binary

– Implement a binary search recursively

– Print all subsets of a given set of unique objects

• Determine all appropriate combinations of jumpers

– Explore the merge sort recursive algorithm

3
Solving problems recursively

Selection sort

• Let’s re-interpret selection sort recursively:

– If the array has capacity of 0 or 1, we are done

– Given an array of capacity n > 1:

• Find the largest entry and swap it with the last entry

• Apply selection sort to the first n – 1 entries
void selection_sort(double array[], std::size_t capacity) {

if (capacity <= 1) {

return;

}

std::size_t max_index{ find_max(array, capacity - 1) };

if (array[max_index] > array[capacity - 1]) {

std::swap(array[max_index], array[capacity - 1]);

}

selection_sort(array, capacity - 1);

}

}

else {

4
Solving problems recursively

Insertion sort

• Let’s re-interpret insertion sort recursively:

– If the array has capacity of 0 or 1, we are done

– Given an array of capacity n:

• Sort the first n – 1 entries using insertion sort

• Insert the last entry into the now-sorted array

• This is also straight-forward:
void insertion_sort(double array[], std::size_t capacity) {

if (capacity <= 1) {

return;

}

insertion_sort(array, capacity - 1);

insert(array, capacity);

}

}

else {

1 2

3 4

2020-11-02

2

5
Solving problems recursively

Printing a number in binary

• Suppose we want to print a number in binary:

– For example, we know that n = 13 in binary is 1101

– It is easy to print the least-significantdigit:

std::cout << (n%2);

– But, before we print that last “1”, we must print “110”

– How do we get the value 110?

• Recall that integer division discards the fractional part,

so 0b1101/2 == 0b110

– Thus,

• To print 1101, we must print 110 and then print the 1

• To print 110, we must print 11 and then print the 0

• To print 11, we must print 1 and then print the 1

• To print a single bit 1, we just print that bit

6
Solving problems recursively

Printing a number in binary

• Thus, the implementation of this function is quite straight-forward:
void print_binary(int const n) {

if (n <= 1) {

std::cout << n;

}

print_binary(n/2);

std::cout << (n%2);

}

}

else {

101010101010101010

7
Solving problems recursively

Printing a number in binary

• To test this algorithm, we could author the following program:
#include <iostream>

// Function declarations

int main();

void print_binary(int const n);

// Function definitions

int main() {

for (int k{0}; k <= 17; ++k) {

print_binary(k);

}

return 0;

}

// Other definitions...

Output:
0

1
10
11

100
101
110

111
1000
1001

1010
1011
1100

1101
1110
1111

10000
10001

8
Solving problems recursively

Printing a number in binary

• Suppose we test our code with negative numbers:
#include <iostream>

// Function declarations

int main();

void print_binary(int const n);

// Function definitions

int main() {

for (int k{0}; k <= 17; ++k) {

print_binary(-k);

std::cout << std::endl;

}

return 0;

}

// Other definitions...

Output:
0

-1
-2
-3

-4
-5
-6

-7
-8
-9

-10
-11
-12

-13
-14
-15

-16
-17

5 6

7 8

2020-11-02

3

9
Solving problems recursively

Printing a number in binary

• What is the problem?
void print_binary(int const n) {

if

std::cout << n;

} else {

print_binary(n/2);

std::cout << (n%2);

}

}

(n <= 1) {((n == 0) || (n == 1)) {

10
Solving problems recursively

Printing a number in binary

• Suppose we test our code with negative numbers:
#include <iostream>

// Function declarations

int main();

void print_binary(int const n);

// Function definitions

int main() {

for (int k{0}; k <= 17; ++k) {

print_binary(-k);

std::cout << std::endl;

}

return 0;

}

// Other definitions...

Output:
0

0-1
0-10
0-1-1

0-100
0-10-1
0-1-10

0-1-1-1
0-1000
0-100-1

0-10-10
0-10-1-1
0-1-100

0-1-10-1
0-1-1-10
0-1-1-1-1

0-10000
0-1000-1

11
Solving problems recursively

Printing a number in binary

• Question: Why are we getting -1 printed?

– You will recall that n%2 is that number such that

n == (2*(n/2) + (n%2))

– For example,

7 = 2* 3 + 1

6 = 2* 3 + 0

6 = 2*(-3) + 0

-7 = 2*(-3) - 1

Output:
0
0-1
0-10
0-1-1

0-100
0-10-1
0-1-10

0-1-1-1
0-1000
0-100-1
0-10-10
0-10-1-1
0-1-100
0-1-10-1
0-1-1-10
0-1-1-1-1
0-10000
0-1000-1

12
Solving problems recursively

Printing a number in binary

• Question: How should we print –13 in binary?

– The most reasonable format would be -1101

– Thus, to print –13, print "-" and then print 13

void print_binary(int const n) {

if (n < 0) {

std::cout << "-";

print_binary(-n);

} else if ((n == 0) || (n == 1)) {

std::cout << n;

} else {

print_binary(n/2);

std::cout << (n%2);

}

}

9 10

11 12

2020-11-02

4

13
Solving problems recursively

Printing a number in binary

• Here is an interesting case:
int main() {

// 31

// Print -2 -- the largest possible negative integer

// - it should print as -10000000000000000000000000000000

print_binary(-2147483648);

return 0;

}

• The output may be interesting; either

Nothing

--
--
--
--
--
--
--
--

14
Solving problems recursively

Binary search

• Recall our function declaration of the binary search:
std::size_t binary_search(double array[], std::size_t capacity,

double value);

• The behavior is as follows:

– If the value is found, the location is returned

• An index between 0 and capacity - 1

– Otherwise,capacity is returned

15
Solving problems recursively

Binary search

• Let us describe binary search recursively:

– If the array has capacity two or less,

• Just check the existing entries

– If the capacity is three or greater,

check the middle entry

• If the middle entry equals the value, return its index

• If the middle entry is greater than the value,

recurse on the array up to the middle entry

• Otherwise, the middle entry is less than the value,

recurse on the array starting at the next entry

0 1 2 3 4 5 6 7 8 9 10 11 12

0.3 0.9 1.2 1.9 2.3 2.5 2.8 3.5 3.7 4.5 4.9 6.3 9.5

16
Solving problems recursively

Binary search

• Implementing the base case is easy:
std::size_t binary_search(double array[], std::size_t capacity,

double value) {

if (capacity <= 2) {

for (std::size_t k{0}; k < capacity; ++k) {

if (array[k] == value) {

return k;

}

}

return capacity;

} else {

// recursive case

}

}

13 14

15 16

2020-11-02

5

17
Solving problems recursively

Binary search

• Next, we can find and check the middle entry:
std::size_t binary_search(double array[], std::size_t capacity,

double value) {

if (capacity <= 2) {

// Base case...

} else {

std::size_t middle_index{ capacity/2 };

if (array[middle_index] == value) {

return middle_index;

} else ...

18
Solving problems recursively

Binary search

• How will we recurse if array[middle_index] != value?

– To determine the correct approach, let us suppose the capacity is 9:

– We can calculate the middle index with capacity/2

• In this case, the middle index is 4

0 1 2 3 4 5 6 7 8

2.3 3.7 5.6 6.1 7.0 8.4 9.5 10.9 11.2

19
Solving problems recursively

Binary search

• Suppose we find that value < array[middle_index]:

– The appropriate call is therefore

binary_search(array, middle_index, value);

• Now, suppose we were searching for the entry 3.7

– This call would return 1

– This is the appropriatevalue to return

• Now, suppose we were searching for the entry 4.6

– The value is not found, so 4 is returned

– But to flag that an entry is not found in an array of capacity 9,

we must return 9

0 1 2 3 4 5 6 7 8

2.3 3.7 5.6 6.1 7.0 8.4 9.5 10.9 11.2

20
Solving problems recursively

Binary search

• We simply have to check the value returned
if (capacity <= 2) {

// Base case...

} else {

std::size_t middle_index{ capacity/2 };

if (array[middle_index] == value) {

return middle_index;

} else if (value < array[middle_index]) {

std::size_t returned_index{ binary_search(array, middle_index,

value) };

if (returned_index == middle_index) {

return capacity;

}

return returned_index;

}

} else {

else {

17 18

19 20

2020-11-02

6

21
Solving problems recursively

Binary search

• Suppose we find that array[middle_index] < value:

– We want to search the second half the array

• The first entry is at 5

– That is, middle_index + 1

• The capacity is 4

– That is, capacity - middle_index - 1

– The address of the entry at index 5 is either:

&array[5] or &array[middle_index + 1]

array + 5 or array + middle_index + 1

– The appropriate call is therefore

binary_search(array + middle_index + 1,

capacity - middle_index - 1,

value);

0 1 2 3 4 5 6 7 8

2.3 3.7 5.6 6.1 7.0 8.4 9.5 10.9 11.2

22
Solving problems recursively

Binary search

• Suppose we make this recursive call:

binary_search(array + middle_index + 1,

capacity - middle_index - 1,

value);

– What do we do with the returned index?

• Now, suppose we were searching for the entry 10.9

– This call would return 2

– We want to return 7, so this would be 2 + middle_index + 1

• Now, suppose we were searching for the entry 12.6

– The value is not found, so 4 is returned

– But to flag that an entry is not found in an array of capacity 9,

we must return 4 + middle_index + 1

• In both cases, we add middle_index + 1 to the returned index

0 1 2 3 4 0 1 2 3

2.3 3.7 5.6 6.1 7.0 8.4 9.5 10.9 11.2

5 6 7 8

23
Solving problems recursively

Binary search

• Thus, for the alternative body:
std::size_t middle_index{ capacity/2 };

if (array[middle_index] == value) {

return middle_index;

} else if (value < array[middle_index]) {

std::size_t returned_index{ binary_search(array, middle_index,

value) };

if (returned_index == middle_index) {

return capacity;

} else {

return returned_index;

}

}

return binary_search(array + middle_index + 1,

capacity - middle_index - 1,

value)

}

else {

+ middle_index + 1;

24
Solving problems recursively

Binary search
std::size_t binary_search(double array[], std::size_t capacity, double value) {

if (capacity <= 2) {

for (std::size_t k{0}; k < capacity; ++k) {

if (array[k] == value) {

return k;

}

}

return capacity;

} else {

std::size_t middle_index{ capacity/2 };

if (array[middle_index] == value) {

return middle_index;

} else if (value < array[middle_index]) {

std::size_t returned_index{ binary_search(array, middle_index, value) };

if (returned_index == middle_index) {

return capacity;

} else {

return returned_index;

}

} else {

return binary_search(array + middle_index + 1,

capacity - middle_index - 1, value) + middle_index + 1;

}

}

}

21 22

23 24

2020-11-02

7

25
Solving problems recursively

All subsets

• Given the set {1, 2, 3}

– All subsets include

{}

{1}, {2}, {3}

{1,2}, {1,3}, {2,3}

{1,2,3}

• Given the set {1, 2, 3, 4}

– All subsets include

{}

{1}, {2}, {3}, {4}

{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}

{1,2,3,4}

Output:

1
2
3

1 2
1 3
2 3
1 2 3

Output:

1
2
3
4
1 2
1 3
1 4
2 3
2 4

3 4
1 2 3
1 2 4

1 3 4
2 3 4
1 2 3 4

26
Solving problems recursively

All subsets

• Given the set {1, 2, 3, 4, 5}

– All subsets include

{}

{1}, {2}, {3}, {4}, {5}

{1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5}

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}

{1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}

{1,2,3,4,5}

Output:

1
2
3
4
5
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
2 3 4
2 3 5
3 4 5
1 2 3 4
1 2 3 5
1 2 4 5
1 3 4 5
2 3 4 5
1 2 3 4 5

27
Solving problems recursively

All subsets

• How print all subsets of the set {1, 2, …, n}?

– Suppose we had an array of n Boolean values

– If the kth entry is true, then k is the subset

– Otherwise, it is not

• To print this, we could use:

• For example, if the membership array was:

this would print 1 4 5 8

for (unsigned int k{0}; k < n; ++k) {
if (membership_array[k]) {

std::cout << (k + 1) << " ";
}

}

0 1 2 3 4 5 6 7

true false false true true false false true

28
Solving problems recursively

All subsets

• Thus we have a function that has at least the following:
void print_subsets(bool membership_array[], std::size_t capacity);

– On the first recursive call,

we will flag “1” as being printed (true) or not (false)

membership_array[0] = true or false;

– On the next recursive call,

we will flag “2” as being printed or not

membership_array[1] = true or false;

– On the nth recursive call,

we will flag “n” as being printed or not

membership_array[capacity - 1] = true or false;

– Finally, with the next recursive call, each array entry has been

assigned either true or false, so we can print the array

25 26

27 28

2020-11-02

8

29
Solving problems recursively

All subsets

• What more information must we pass down?

– Which index are we currently at
void print_subsets(bool membership_array[], std::size_t capacity,

std::size_t current_index);

– Thus, we must

• Create an appropriately sized array

bool array[n];

• Call

print_subsets(array, n, 0);

30
Solving problems recursively

All subsets

• Thus, we could implement this as follows:
void print_subsets(bool membership_array[], std::size_t capacity,

std::size_t current_index) {

if (current_index == capacity) {

for (unsigned int k{0}; k < capacity; ++k) {

if (membership_array[k]) {

std::cout << (k + 1) << " ";

}

}

std::cout << std::endl;

}

membership_array[current_index] = true;

print_subsets(membership_array, capacity, current_index + 1);

membership_array[current_index] = false;

print_subsets(membership_array, capacity, current_index + 1);

}

}

else {

31
Solving problems recursively

All subsets

• The only thing left is to make this easier for the user:

– The users should not have to allocate an array

void print_subsets(unsigned int n) {

bool membership_array[n]{};

print_subsets(membership_array, n, 0);

}

– Thus, a test for this recursive function may be:

int main() {

for (unsigned int k{0}; k <= 10; ++k) {

std::cout << "-------- " << k << " --------"

<< std::endl;

print_subsets(k);

}

return 0;

}

32
Solving problems recursively

Jumpers

• A pair of jumper pins on a circuit board (e.g., a motherboard) can be
optionally connected with a jumper to configure the circuit board

– A circuit board may have n pairs of jumper pins

– Each pair can be open or physically shorted by adding a jumper

29 30

31 32

2020-11-02

9

33
Solving problems recursively

Jumpers

• Suppose you use a circuit board in your product,

and certain pairs of jumpers must be open or shorted,

but the user can use other pairs for additional configurations

• You need to your software for all possible user configurations

– Let 0 represent open, 1 closed and ? user configurable

1 ? 0 ? 1 1 0 1 ? ? 0 1 0 0 1 0

34
Solving problems recursively

Jumpers

• When you test your software,

you must test it against all possible user configurations

– Here we see four user-configurable pins

"1?0?1101??010010"

• All possible configurations include:

1000110100010010 1100110100010010

1000110101010010 1100110101010010

1000110110010010 1100110110010010

1000110111010010 1100110111010010

1001110100010010 1101110100010010

1001110101010010 1101110101010010

1001110110010010 1101110110010010

1001110111010010 1101110111010010

35
Solving problems recursively

Jumpers

• Your goal is to author a recursive function

void print_configurations(char pins[]);

– It takes a C-style string (null-character-terminated) as an argument

• The characters should only be 0, 1 or ?

– It prints out all possible user configurations

– You may modify the string entries before you send it recursive

• For example, this program output should match the previous slide:

int main() {

char pin_setup[17]{ "1?0?1101??010010" };

print_configurations(pin_setup);

return 0;

}

– The order doesn’tmatter

36
Solving problems recursively

56515048
4742

3431
302523

21
1714

12
7

4

• Suppose you had two piles of sorted cards:

– How could you create a single pile of sorted cards?

Merging

1

33 34

35 36

2020-11-02

10

37
Solving problems recursively

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7

• Suppose you had two sorted arrays

– How could we create a single sorted array out of these?

56515048

4742

3431

302523

21

1714

12

7

4

Merging

1 565150483431211241

474230252317147

38
Solving problems recursively

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10 11 12 13 14 15 16 17

• Suppose we had a single array:

– The first m entries of which are sorted

– The second n entries of which are also sorted

• How could we create a single sorted array out of these?

56515048 47423431 30252321 171412 74

Merging

1 565150483431211241 474230252317147

39
Solving problems recursively

Merging

• Here is the implementation of merging one such array
void merge(double array[], std::size_t cap_1,

std::size_t cap_2) {

assert(is_sorted(array, cap_1) == cap_1);

assert(is_sorted(array + cap_1, cap_2) == cap_2);

double tmp_array[cap_1 + cap_2]{};

std::size_t k1{0};

std::size_t k2{cap_1};

std::size_t j{0};

while ((k1 < cap_1) && (k2 < cap_1 + cap_2)) {

if (array[k1] <= array[k2]) {

tmp_array[j] = array[k1];

++k1;

} else {

tmp_array[j] = array[k2];

++k2;

}

++j;

}

Beyond the scope of this course!

40
Solving problems recursively

Merging

• Here is the implementation of merging one such array
while (k1 < cap_1) {

tmp_array[j] = array[k1];

++k1;

++j;

}

while (k2 < cap_1 + cap_2) {

tmp_array[j] = array[k2];

++k2;

++j;

}

for (std::size_t k{0}; k < (cap_1 + cap_2); ++k) {

array[k] = tmp_array[k];

}

assert(is_sorted(array, cap_1 + cap_2) == (cap_1 + cap_2));

}

Beyond the scope of this course!

37 38

39 40

2020-11-02

11

41
Solving problems recursively

Merge sort

• Now for the most simple recursive sorting algorithm out there:

– If an array has only one or zero entries in it, it is sorted

– Otherwise, divide the array into two,

sort each recursively,

and then merge the results

42
Solving problems recursively

Merge sort

• Here is the implementation:
void merge_sort(double array[], std::size_t capacity) {

if (capacity <= 1) {

return;

}

std::size_t capacity_1{ capacity/2 };

std::size_t capacity_2{ capacity – capacity_1 };

merge_sort(array, capacity_1);

merge_sort(array + capacity_1, capacity_2);

merge(array, capacity_1, capacity_2);

}

}

else {

43
Solving problems recursively

Summary

• Following this presentation, you now:

– Understand that implementing selection sort and insertion sort is
quite straight-forward

– Know how to print a number in binary recursively

– Understand that binary search is also straight-forward to implement
recursively

– Know the problem of finding all subsets of a given set of values

– Know that this can be used to, for example, find all possible
combinations of jumper pins given certain restrictions

– Are aware of the merge sort algorithm

44
Solving problems recursively

References

[1] Wikipedia,

https://en.wikipedia.org/wiki/Insertion_sort

https://en.wikipedia.org/wiki/Selection_sort

https://en.wikipedia.org/wiki/Binary_number

https://en.wikipedia.org/wiki/Binary_search_algorithm

https://en.wikipedia.org/wiki/Power_set

https://en.wikipedia.org/wiki/Jumper_(computing)

https://en.wikipedia.org/wiki/Merge_sort

41 42

43 44

2020-11-02

12

45
Solving problems recursively

Acknowledgments

None so far.

46
Solving problems recursively

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and

accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

47
Solving problems recursively

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The

material in it reflects the authors’ best judgment in light of the

information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the

responsibility of such parties. The authors accept no responsibility for

damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for

which it was intended.

45 46

47

